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1 ABSTRACT
Social state abstraction is the process of compressing an agent’s
social context into a lower dimensional space. These compressed
representations allow us to not only extract meaningful social cues,
but also build policies on top. One social scenario that is rich with
context is group conversations. In a group conversation, agents
must not only be able to understand individual social cues, but
also group social cues. We propose using convolutional neural
networks (CNNs) and variational autoencoders (VAEs) to learn
motion-orienting policies from social cues in group conversations.
In particular, we are interested in teaching a robot how to orient it-
self as a human would. To experiment in a realistic environment, we
created a simulation in Unity that uses motions from real, human
conversations. These conversations are composed of three individ-
uals: a haggler, who is trying to sell a product, and two listeners.
We generated a dataset that replaces one of the participants with
our Pepper robot and trained three separate CNN architectures on
that dataset. We attempted to learn policies for both the regression
and classification versions of this task, evaluating our models in a
testing environment with real-time simulations. Our results show
that while CNNs are unable to learn a proper motion-orienting pol-
icy, they are at least able to direct the robot towards the speaker in
the testing environment. On the other hand, VAEs seem to perform
better and are able to learn some form of compressed representa-
tion. The discrepancy in the performance of the two architectures
suggests that the CNN model lacks sufficient structure, preventing
it from properly disentangling the social context.

2 INTRODUCTION
As research in artificial intelligence continues to progress, robots
are becoming increasingly sophisticated real-world agents. In par-
ticular, social robots, or robots that specialize in social interactions,
are beginning to behave more and more like humans, even adapting
to our advanced social protocols. For example, in a 2018 study, Yoon
et al. developed a deep recurrent neural network model that allowed
robots to generate gestures while speaking [12]. They successfully
applied their model to the NAO robot, showing that robots can
emulate and reproduce human gestures [12]. Another example is
Kaspar, a humanoid robot designed to teach children with autism
how to view the world from other people’s perspectives [11]. Kas-
par used object recognition and 3D orientation tracking algorithms,
so that it could think about perspective as humans would [11].

Despite the advancements in human-robot interaction (HRI),
robots have continued to struggle in larger social settings, such as
group conversations. There have been many studies on improving
robot behavior in one-on-one interactions, such as applying seq2seq
models [3] and Bayesian networks [8] to learn gestures, but the
problem is slightly different when the conversation is held among

a group. In such a scenario, the robot must be able to process group
social cues on top of individual social cues, making the problem
more challenging.

In this report, we propose deep neural networks for compress-
ing group social states into lower dimensional representations. In
particular, we are interested in learning motion-orienting policies
for group conversations. To accomplish this task, we experimented
with two classes of models: convolutional neural networks (CNNs),
which are discriminative, and variational autoencoders (VAEs),
which are generative. CNNs are feedforward neural networks that
specialize in image processing. They are able to compress images
into their most meaningful features by extracting feature maps at
each convolutional layer in the network [13]. VAEs, on the other
hand, are a well-established class of models that specialize in the
unsupervised learning of complex distributions [1]. While standard
auto-encoders are discriminative and learn a compressed repre-
sentation of the input, VAEs are generative and learn a latent rep-
resentation of the input. Because of their architecture, VAEs are
effective models for encoding sequential data [5]. In particular, a
study by Yingzhen Li and Stephan Mandt showed that VAEs are
capable of separating dynamic features from static features in video
recordings [5].

The rest of this report lays out the context and results of our ef-
forts. Before training ourmodels, we built a simulation environment
in Unity and generated a new dataset using joint information from
the Haggling dataset [4]. We trained 3 different CNN architectures
on our dataset, attempting both regression and classification. While
the CNN was not able to learn a proper motion-orienting policy,
we did acquire key insights into both the model architectures and
the fundamental nature of the motion-orienting problem.

3 RELATEDWORK
Surprisingly, there is not a significant amount of previous work in
this area. This is likely because robust, motion-orienting policies are
difficult to learn, and the problem is made even more challenging
in multi-agent social contexts.

3.1 Multi-Modal Approaches to Learning in
Group Conversations

Previouswork on learning policies in group conversations has relied
onmulti-modal inputs [6], [7]. To derive their motion-orienting poli-
cies, Matsusaka et al. uses a rule-based approach with constraints
[6], while Matsuyama et al. uses partially observable Markov de-
cision processes (POMDP) [7]. Despite the successes of their ap-
proaches, we would like to depend on only one modality. In addi-
tion, rule-based systems are rarely generalizable, making them less
effective than modern AI approaches.



Figure 1: The simulation used in Vázquez et al. The robot has
access to a camera and a microphone array for identifying
the speaker [10].

In 2016, Vázquez et al. published a study that investigated the ef-
fectiveness of reinforcement learning in deriving motion-orienting
policies [10]. As with the previously mentioned research, they
trained their robot on multi-modal inputs. Their work showed
that robots are able to learn robust policies after 3 to 7 minutes of
training [10]. While their results are promising, their simulation
only considers the group conversation in a 2D plane. We would
like to extend their work to a more realistic setting with moving
human speakers and a humanoid conversation partner.

3.2 Learning Motion-Orienting Policies via
Deep Neural Networks

Historically, CNNs have shown great potential in learning motion-
orienting policies. In a paper by Smolyanskiy et al., a low-flying
drone was able to learn a motion policy via deep convolutional neu-
ral networks [9]. The model passes images captured from the drone
to an 18-layer ResNet, which then extracts the relevant features
for the lower dimensional representation. At the end of the model,
there are fully connected layers that predict a 3D orientation and a
3D offset, which the drone then uses to reposition itself [9].

The success of [9] demonstrates that convolutional neural net-
works can be effective at learning motion-orienting policies from a
single modality. We hope to build on their work by applying CNNs
to a different task, namely orienting in group conversations. We
would like to explore various CNN architectures, including those
that contain ResNet layers. While our task is fundamentally differ-
ent, there are many similarities in how we frame the problems and
how we approach them.

4 METHOD
The project was divided into two main objectives: to first generate
a motion-orienting policy using deep neural networks and then to
apply that generated policy to a group conversation.

4.1 Joint Transfer
The conversation groups are composed of two human avatars and a
Pepper robot. The human avatars were imported from Microsoft’s

Figure 2: A visual representation of the Haggling dataset.

Figure 3: The twoUnity scenes used in our experiments. The
left image is the cocktail party scene, while the right image
is the warehouse scene. We chose more than one scene so
that the models would learn to ignore the environments.

Rocketbox library, while the model for the Pepper robot was pro-
vided to us from previous experiments in the Interactive Machines
Group. To generate the poses of the Rocketbox avatars, we used
joint information from the Haggling dataset, which was created by
the CMU Panoptic Studio [4]. As shown in Figure 3, the Haggling
dataset consists of conversations between three human participants,
with joint information for each individual.

The Haggling dataset uses the OpenGL simulation in Python,
while our setup uses Unity and the Robot Operating System (ROS),
so we had to transfer the joint information from OpenGL to ROS.
We chose a Unity environment for our experiments because the
simulations were more realistic than the skeleton poses originally
provided by the Haggling dataset. For joint transfer, we first mapped
the joints of the Panoptic avatars to our avatars (including the
robot) and then recomputed the positions and angles of the joints.
To make the problem of learning a motion-orienting policy more
tractable, we decided to limit the robot’s action space, so that it
only needed to orient its head and its body. For the robot, we
converted the orientations of the Panoptic avatar’s face and body
into quaternions and then passed that information to our Unity
simulation. The angles are relative to the previous time step, so the
robot only has to predict how much to rotate instead of an exact
orientation angle.

4.2 Data Collection
Once we had the simulation set up, we created a dataset using the
robot’s built-in camera. The Haggling dataset was recorded at 29.97
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Figure 4: An example input from our generated dataset.

FPS, which is around the recording rate of the camera in Unity, but
due to processing lag in our simulation, we decided to stream the
dataset at 10 FPS. This meant that there were now multiple images
per Haggling dataset frame. To create a 1-to-1 mapping, we simply
chose the first image for each frame as the representative.

Once we synchronized the Unity camera images with the Hag-
gling dataset, we began collecting data. We wrote scripts that used
ROS to stream the Haggling dataset to our avatars in Unity and
saved the images collected from the robot’s camera as a rosbag.
To increase the size of our dataset, we had the robot take turns
as each of the three individuals in the conversation. We recorded
a "medium-sized dataset" with 10 sequences in the cocktail party
scene and a complete dataset with all of the sequences in both
scenes.

4.3 Dataset Generation
After recording the data, we had to prepare the dataset for our
models. To make our task simpler, we only considered the parts of
a sequence where the robot was not speaking. The parts where the
robot was speaking were spliced out. In addition, we converted the
camera images to grayscale because we did not believe that color
was important to our task.

In order to give the robot sufficient context, we augmented each
image with the previous four images and added a "haggling" bit
as a 6th "image." The haggling bit indicates whether the robot is
the haggler and could provide additional context for how the robot
should orient itself, as the haggler behaves differently from the
other individuals. In addition, we decided to make the haggling bit
as large as an image, so that the network would not just ignore it.
An example is shown in Figure 4

Figure 5: A visual representation of the CNN approach.
For our 3 architectures, the number of convolutional and
max pooling layers depends on the model, but the struc-
ture of the fully connected layers is the same. Made with
http://alexlenail.me/NN-SVG/LeNet.html.

Figure 6: Images of our test environment. The left is the over-
all view of the conversation, while the right is the output of
the robot’s camera. The red marker indicates the speaker.

4.4 Building the Models
We explored two different model architectures: deep convolutional
neural networks (CNNs) and variational autoencoders (VAEs). I
built the CNN models, while Sally Ma, another student in the Inter-
active Machines Group, built the VAE models.

We explored 3 main architectures for the CNN model:
(1) A simple, 4-layer CNN
(2) A 50-layer ResNet [2]
(3) An unraveled, 10-layer ResNet
We started with the medium-sized dataset to make sure that our

models were learning, before trying out the larger, complete dataset.
We primarily focused on regression, training the CNN models to
predict continuous action values from the input images. Towards
the end, we reframed the problem as a classification task, training
the CNN models to predict bins of action values. A diagram of the
CNN model architecture can be found in Figure 5.

For regression, we used mean squared error (MSE) as the loss
function, while for classification, we used categorical cross-entropy
(CCE).

4.5 Evaluation
Before generating our dataset, we set aside 20% of the sequences
in the Haggling dataset for testing. To evaluate our models, we
looked at how the losses changed over training epochs and how the
models performed in real-time simulations. For the latter, we built
a testing environment that allows us to plug in our best models and
visualize the robot’s actions. An example is shown in Figure 6. The
marker indicates which avatar is talking.

5 EXPERIMENTS
We trained various CNN models on the generated datasets and
compared their performance to the VAE models.
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5.1 Regression on the Medium-Sized Dataset
We first trained the CNN model on the medium-sized dataset. As
shown in Figure 7, the CNNs do not really seem to be learning.
The top lines are the validation loss, while the bottom lines are
the training loss. The 4-layer CNN, which is the topmost graph,
does show a downward trend in training loss towards the end, but
further training did not decrease the validation loss. The 50-layer
ResNet overfits on the data by epoch 28, likely because the model
has too many parameters, while the 10-layer ResNet shows a steady
decrease in training loss but no change in validation loss. In most
of the models, the CNNs do not really learn to predict meaningful
action values from the images. They just learn to predict an average
angle that minimizes the loss.

The overall trends in the graphs suggest that the models are all
overfitting on the medium-sized dataset. As a result, we experi-
mented with dropout layers and L2 regularization to discourage
overfitting. The extra regularization did not end up affecting per-
formance significantly, and both the training and validation losses
became flat lines.

The VAE model, on the other hand, seemed to perform better on
the medium-sized dataset. As shown in Figure 8, the losses for both
image reconstruction and the action predictions are decreasing
over time. One potential explanation is that the lack of structure in
the CNN model may be preventing it from learning effectively. In
particular, the loss function of the VAE includes a regularization
term based on the KL-divergence of the learned distribution 𝑄 and
the true distribution 𝑃 . This term adds additional structure to the
model by keeping 𝑄 relatively close to 𝑃 .

The best encoder for the VAE was the unraveled, 10-layer CNN,
so for future experiments, we primarily looked at that CNN archi-
tecture for training and evaluation.

5.2 Regression on the Complete Dataset
Because the CNN could not learn a proper policy from the medium-
sized dataset, we hypothesized that more data could improve its
performance. We trained the CNN on the complete dataset, but
the results did not improve significantly. As shown in Figure 9, the
training and validation losses for the unraveled CNN are relatively
flat. We ended up taking a deeper look at the complete dataset and
noticed that there were problems with the vertical axis positions of
the avatars in the conversation. It seems that Unity starts to bug
out after running for a long time. As a result, we decided to use the
medium-sized dataset for future experiments.

5.3 Analyzing the Action Space
Another hypothesis for why the CNN was not learning properly
was that the action space is too skewed. The distributions of face
rotation angles in the medium-sized dataset and the full dataset
are shown in the top two images of Figure 10. As seen in the plots,
there are significantly more data points around 0, which encourages
the model to predict values that are always close to 0. In addition,
we considered the possibility that the last 5 images are too close
temporally to be helpful. The original dataset is recorded at 29.97
FPS, so the last 5 frames constitute about 166 milliseconds, which is
a little too short for humans to move significantly. As a result, we
decided to space out the images such that 10 frames of the dataset

Figure 7: Loss graphs for CNN models trained on the
medium-sized dataset. The upper lines are the validation
loss, while the lower lines are the training loss. The topmost
graph is the simple, 4-layer CNN, the second graph is the 50-
layer ResNet, and the bottom graph is the unraveled ResNet.
Despite their different structures, all of the models seem to
be overfitting.

would pass between each pair of images. This created slightly better
distributions, as shown in the bottom two images of Figure 10, but
they are still skewed. We trained on this dataset as well, but the
results were not any different.

5.4 Classification on the Medium-Sized Dataset
With limited results on the regression task, we switched over to
the classification task. We grouped the actions into 7 bins of width
10, with centers from -30 to 30. We ignore rotations greater than 30
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Figure 8: Loss graphs for the VAE model on the medium-
sized dataset. The best encoder architecture was the unrav-
eled, 10-layer ResNet. The red plots correspond to a model
that was trained on 100 epochs, while the gray plots corre-
spond to a model that was trained on 300 epochs. The VAE
seems to be learning, given the downward trend of the losses.
Credit to Sally Ma for the graphs.

Figure 9: The loss graph for the unraveled, 10-layer CNN on
the medium-sized dataset. The upper line is the validation
loss, while the lower line is the training loss. Both lines are
flat, which indicates that the model is not really learning.

degrees because each data point now spans 50 frames, and realis-
tically, the robot should not have to turn more than 30 degrees in
less than 2 seconds. To help with the skewed distribution of action
values, we added weights to each of the bins, so that the classes
would have equal weight when training.

Even with the modifications, the CNN model still struggled to
learn a proper policy. As shown in Figure 11, the loss was decreas-
ing, but the accuracy fluctuated wildly. More importantly, precision
and recall both declined as the model trained, indicating that the
model could not really differentiate between the classes. One poten-
tial explanation is that the dataset has many similar images with

Figure 10: Graphs of the action space for the medium-sized
and full datasets. The top left image shows the distribution
of face rotation angles for the medium-sized dataset, while
the top right image shows the distribution of face rotation
angles for the full dataset. The bottom two images show the
distribution of the face and body rotation angles for the full
dataset after adding 10 frames between each pair of images.

Figure 11:Metrics for the unraveled, 10-layerCNN trained to
do classification. The green line is the training metric, and
the gray line is the validation metric. While the loss does
seem to decrease initially, the accuracy jumps around, and
the precision and recall do not improve.

drastically different action values. While this is likely the case, there
must still be overall trends in the data, as the VAE was able to learn
from the medium-sized dataset.
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5.5 Video Demonstration
Here is a video demonstration of our CNN model in action. This
particular model predicts continuous actions and was trained on
the complete dataset. Overall, the CNN does a reasonable job of
orienting the robot towards the haggler, but the robot moves very
slowly. As mentioned before, this is because the action space is
dominated by values that are close 0. For reference, the video is
playing at 8x speed.

6 CONCLUSION
Through our experiments, we investigated the effectiveness of CNN
and VAE architectures in learning motion-orienting policies for
group conversations. The CNN, despite its previous success in [9],
was not able to learn a proper policy for this task. When trained on
the medium-sized dataset, the CNN architectures all overfit. Even
with aggressive regularization and dropout, the CNN models were
not able to improve their performance significantly.

In an attempt to further simplify the problem, we switched to the
classification version of the task, in which the angles that the robot
could rotate were placed into 7 discrete bins. We redistributed the
weights of each class as well, so that minority classes would have
more weight during training. The accuracy of the model managed
to reach around 50%, but the precision and loss graphs indicate that
the model was not really learning.

The VAE model, on the other hand, showed more promise. Its
loss functions were decreasing when trained on the medium-sized
dataset, and the image reconstructions looked reasonable. One po-
tential explanation for the discrepancy is that the CNN model lacks
sufficient structure to learn properly. The VAE model is trained
under more constraints, including a KL-divergence penalty that
encourages its learned distribution to stay close to the true distri-
bution.

Despite the flaws of the CNN, however, the robot does perform
acceptably in the real-time testing environment. While slow, it
orients itself towards the speaker in most sequences. The small
predictions are likely a result of the skewed distribution of our
training data, which has a much greater representation of angles
close to 0.

Lastly, we have made our dataset publicly available. The dataset
captures group conversations among two humans and a robot in a
semi-realistic, simulation environment. The code for our project
can be found here on GitLab. We have included the original code
for collecting the data, along with the code for training our models
and running the test environment.

7 FUTUREWORK
There are many potential directions for future work, from improv-
ing our experiments to adding additional constraints. One interest-
ing idea is to augment the input so that it contains auditory input
in addition to visual input. At the moment, the only input to the
models are the images captured by the robot, but a second modal-
ity, like audio, could be provide extra information that improves
general performance.

Another direction for future work is to experiment with alterna-
tive model architectures. Two potential options, in particular, are

convolutional recurrent neural networks and reinforcement learn-
ing models. Convolutional RNNs, like ordinary RNNs, specialize
in learning sequential information. The nature of a conversation
is sequential, so there are likely many temporal signals that could
be learned. Reinforcement learning, on the other hand, has seen
previous success in [10] and is one of the go-to approaches for
robotics tasks.

Finally, we could reattempt the regression task but upsample
images with higher rotation angles. One problem we saw in our
test environment was that the robot turns at small angles, due to
the skewed distribution of our action space. This is one approach
to redistributing the training data so that it is more even.
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